Skip to main content

MANOVA - I


MANOVA (multivariate analysis of variance) is a statistical procedure that allows you to determine if a set of categorical predictor variables can explain the variability in a set of continuous response variables. It is also possible to include continuous predictor variables either as covariates or as true independent variables in the design (so that you can test for the effect of interactions).

MANOVA is related to within-subject ANOVA in that both of these analyses examine multiple measurements from each case (i.e., participant) in your data set. Whether you should perform a MANOVA or a within-subject ANOVA depends on the relationship between the measurements. If the different measurements reflect observations at different levels of a theoretical factor, then
you should perform a within-subject ANOVA. For example, you might look at a person’s heart rate over successive days, such that the different measurements represent different levels of a "time" factor. If the measurements instead reflect different dependent variables, then you should perform a MANOVA. For example, using MANOVA you could simultaneously test whether a treatment program affects participants. responses on a depression scale, their GPA, and their performance on a reaction-time task.

The primary purpose of MANOVA is to show that an independent variable (manipulated either within- or between-subjects) has an overall effect on a collection of continuous dependent variables. If you have a large number of dependent variables, you can perform a MANOVA to see if there is any effect of your independent variables, taking into account the number of different dependent variables you are examining.

If one had multiple dependent variables, he/she could perform an ANOVA on each to examine the effect of the independent variable. However, if one were concerned that performing these multiple tests would increase the Type I error rate, a MANOVA would be useful alternative, as it is a single test of the independent variable’s influence on the collection of dependent variables.
In other words, MANOVA can act as protection against an inflation of your Type I error rate from performing a large number of analyses investigating the same hypothesis. If there is a significant effect of the independent variable in the MANOVA, one could then follow up that MANOVA with univariate ANOVAs (ANOVAs with a single dependent variable). Simulations performed by Hummel and Sligo (1971, Psychological Bulletin) and Rencher and Scott (1990,  Communications in Statistics: Simulation and Computation) have demonstrated that the overall experimentwide error rate when you follow up a significant multivariate test with univariate analyses is almost always below the established alpha. If the univariate tests are performed without consideration of ways to protect against alpha inflation, however, there is a significant increase in the experimentwide error rate. The most common alternative to a multivariate test would be the application of a Bonferroni correction, where the experimenter divides the alpha for each individual test by the number of tests. However, simulations demonstrate that this method leads to an overall experiment-wide error rate that is substantially below the established alpha. Many researchers feel that the use of MANOVA is the best alternative since it provides good protection against alpha inflation and is more powerful than applying a Bonferroni correction. However, it must be noted that this method does not guarantee that the experiment-wide error rate will not exceed the established alpha. Most of the time the experiment-wide error rate will be below alpha, but it will occasionally exceed it slightly. 

Performing a MANOVA is not the same thing as looking for an effect on the average of your dependent variables. Therefore, it is also different from looking for a main effect of a between-subjects variable within a repeated measures analysis. One common misconception is that you cannot use MANOVA if the effect of your independent variable on the dependents varies in terms of direction, because the effects will cancel each other out. In truth, the dependent variables are never combined together in this way. MANOVA separately considers the effect of your independent variables on your dependents. It actually produces a matrix of results, which separately contains the influence of your independents on each of your dependent variables (Actually, what MANOVA does is determine the effect of your independent variables on the principle components that can be calculated from your dependent variables. However, thinking of it the way described in the text is a little simpler and is basically accurate, since the components represent the dimensions of variability found in your dependent variables.)
The multivariate test of an independent variable does not require that it affect each dependent variable in the same way. What is important is just the extent to which your independent variables create differences in each of your dependent variables. For example, reverse coding one of the dependent variables would have absolutely no influence on a MANOVA.

Popular posts from this blog

Structure of a Research Article

UNIT ROOT TEST

Stationarity and Unit Root Testing l   The stationarity or otherwise of a series can strongly influence its behaviour and properties - e.g. persistence of shocks will be infinite for nonstationary series l   Spurious regressions. If two variables are trending over time, a regression of one on the other could have a high R 2 even if the two are totally unrelated l   If the variables in the regression model are not stationary, then it can be proved that the standard assumptions for asymptotic analysis will not be valid. In other words, the usual “ t -ratios” will not follow a t -distribution, so we cannot validly undertake hypothesis tests about the regression parameters. Stationary and Non-stationary Time Series Stationary Time Series l   A series is said to be stationary if the mean and autocovariances of the series do not depend on time. (A) Strictly Stationary : n   For a strictly stationary time series the distribution of   y(t) is independent of t .   Thus it is not just

ISI Journals - Economics

1. ACTUAL PROBLEMS OF ECONOMICS 2. AGRICULTURAL ECONOMICS 3. AGRICULTURAL ECONOMICS-ZEMEDELSKA EKONOMIKA 4. AMERICAN ECONOMIC JOURNAL-APPLIED ECONOMICS 5. AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS 6. AMERICAN JOURNAL OF ECONOMICS AND SOCIOLOGY 7. AMERICAN LAW AND ECONOMICS REVIEW 8. ANNALS OF ECONOMICS AND FINANCE 9. ANNUAL REVIEW OF ECONOMICS 10. ANNUAL REVIEW OF FINANCIAL ECONOMICS 11. ANNUAL REVIEW OF RESOURCE ECONOMICS 12. ANNUAL REVIEW OF RESOURCE ECONOMICS 13. APPLIED ECONOMICS 14. APPLIED ECONOMICS LETTERS 15. AQUACULTURE ECONOMICS & MANAGEMENT 16. ASIA-PACIFIC JOURNAL OF ACCOUNTING & ECONOMICS 17. AUSTRALIAN JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS 18. B E JOURNAL OF THEORETICAL ECONOMICS 19. BALTIC JOURNAL OF ECONOMICS 20. CAMBRIDGE JOURNAL OF ECONOMICS 21. CANADIAN JOURNAL OF AGRICULTURAL ECONOMICS-REVUE CANADIENNE D AGROECONOMIE 22. CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE 23. COMPUTATIONAL ECONOMICS 24. DEFENCE AND PEACE ECONOMICS 25. EA